subscribe
 

Multiple-bit non-volatile memory breakthrough

21st February 2019


Researchers at CEA-Leti and Stanford University have developed the world’s first circuit integrating multiple-bit non-volatile memory (NVM) technology called Resistive RAM (RRAM) with silicon computing units, as well as new memory resiliency features that provide increased capacity over existing RRAM. Target applications include energy-efficient, smart-sensor nodes to support artificial intelligence on the Internet of Things, or ‘edge AI’.

The proof-of-concept chip has been validated for a wide variety of applications (machine learning, control and security). Designed by a Stanford team led by Professors Subhasish Mitra and H S Philip Wong and realised in CEA-Leti’s cleanroom in Grenoble, France, the chip monolithically integrates two heterogeneous technologies: 18 kilobytes (KB) of on-chip RRAM on top of commercial 130nm silicon CMOS with a 16-bit general-purpose microcontroller core with 8KB of SRAM.

The new chip delivers 10 times better energy efficiency (at similar speed) versus standard embedded Flash, thanks to its low operation energy, as well as ultra-fast and energy-efficient transitions from on mode to off mode and vice versa. To save energy, smart-sensor nodes must turn themselves off. Non-volatility, which enables memories to retain data when power is off, is thus becoming an essential on-chip memory characteristic for edge nodes. The design of 2.3 bits/cell RRAM enables higher memory density (NVM dense integration) yielding better application results: 2.3 times better neural network inference accuracy, for example, compared to a 1-bit/cell equivalent memory.

NVM technologies (RRAM and others) suffer from write failures. Such write failures have catastrophic impact at the application level and significantly diminish the usefulness of NVM such as RRAM. The team created a new technique called ENDURER that overcomes this major challenge. This gives the chip a 10 year functional lifetime when continuously running inference with the Modified National Institute of Standards and Technology (MNIST) database, for example.

“The Stanford/CEA-Leti team demonstrated a complete chip that stores multiple bits per on-chip RRAM cell. Stored information is correctly processed when compared with previous demonstrations using standalone RRAM or a few cells in a RAM array,” said Thomas Ernst, Leti’s chief scientist for silicon components and technologies. “This multi-bit storage improves the accuracy of neural network inference, a vital component of AI.” 


 







Subscribe

Subscribe



Newsbrief

twitter facebook linkedin © Setform Limited