MEMS in medicine

Jon Lawson

Sensera is adapting its technology for new applications in bioengineering. The company’s MEMS, or MicroElectroMechanical Systems, technology is now being used at Harvard University in the creation of microfluidic devices, which mimic the functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier.

 
“Sensera is a key partner providing critical microdevice component fabrication, which enables our growing applications in precision medicine and personalised health,” said Dr Richard Novak, Senior Staff Engineer at Harvard University’s Wyss Institute for Biologically Inspired Engineering. “These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each organ-on-chip comprises a polymeric membrane that contains channels lined by living human cells.
 
These hollow, microfluidic channels carry fluids in a way that accurately mimics various functions of the human body, including the respiratory, circulatory and digestive systems. Mechanical forces can be applied to emulate the physical microenvironments of living organs, including breathing motions in the lung and peristalsis-like deformations in the intestine."
 
For Wyss Institute and other customers, Sensera provides moulds to manufacture the polymeric membranes that are assembled in the organ-on-a-chip microfluidic devices. Ralph Schmitt, CEO of Sensera said, “Manufacturing these moulds is a new challenge for us. We’ve had to adapt our traditional MEMS processes and implement a very stringent quality management system that meets the demands of biomedical applications. Through our collaboration with the Wyss Institute, we now have multiple customers engaged in this technology.”
 
The success of Sensera’s involvement in the microfluidic device market is supported by the fact that it is ISO 9001 certified and is working towards its ISO 13485 certification. “These types of MEMS-based products are exciting,” Schmitt said. “It’s a high-growth market space in precision medical technology.”